Tourist Path Optimization Problem

Brian Wheatman
Massachusetts Institute of
Technology
wheatman @mit.edu

ABSTRACT

We studied a variant of the Prize Collecting Traveling
Salesmen Problem, which is a path finding problem with
both constraints and rewards. What is unique about this
variant is that the reward for going to a node is dependent
on the amount of time spent at each node and thus the
optimization must be done not only over which nodes to
visit, but also how long to stay at each node. Our goal is
to be able to more efficiently calculate good solutions.
Because the problem is NP-Hard, we are trying to de-
velop an online algorithm so new solutions can be found
quickly after a single expensive computation is done.
By good solution, we mean one that can get us within a
small percentage of the optimal.

We describe an online algorithm which is able to take
a completed solution to one problem and find the solu-
tion to related problems, which are generated by either
adding a node to or removing a node from the problem
graph. We show that this online algorithm is faster at
generating results than the offline algorithm by up to a
factor of 20.

1 INTRODUCTION

We are studying a motion planning problem with both
constraints and rewards. The basic idea of the problem
is: given a set of nodes, each with a reward function
depending on the amount of time spent at that node and
edges, each of which has a cost in time to travel, how do
you plan a trip that maximizes the total reward given a
total time and returns to the start? An example graph can
be seen in Figure 1 where we see the start labeled Start,
the distance of each edge labeled d;, and each different
time-dependent reward function labeled f;(t;). Also of
interest is the dual problem, which is minimizing the
time required to achieve a certain level of reward. This
problem is a variant of the Traveling Salesmen Problem,
specifically its Prize Collecting variant, with the added
complexity that the reward at each node is not received
for only going to the node but instead dependent on the
amount of time spent at that node.

Sertac Karaman
Massachusetts Institute of
Technology
sertac @mit.edu

Daniela Rus
Massachusetts Institute of
Technology
rus @csail.mit.edu

The goal of this research was to develop an online al-
gorithm so that once a solution is found for any specific
graph, one can easily find the solution to similar prob-
lems. These similar problems are defined as any problem
that can be created by either adding or removing a node
from the original graph. That is to say, the goal of this
research is to develop a way to take a problem, solve it
once using the current technique, then use information
gathered during that first run to find the solution for any
nearby problem statistically faster. We show that not
only can we re-solve statistically faster, but moreover,
some of these problems can be solved a factor of 10
faster.

There are several uses for this problem. The first is
that of a tourist visiting a city. The set of destinations
that the tourist would like to visit are the nodes and the
enjoyment they receive for staying at that location is the
reward. The travel time is the amount of time it takes to
travel between two locations. We want to determine the
ideal set of locations they should go to in the city, and in
what order, to get the most out of their stay. The name
comes from this use of the problem[3]. For this problem,
we can see the benefit of having an online algorithm. We
know that the first solution will take a long time, so this
could be precomputed. However, we can imagine that
on the day of his tour a tourist might change his mind
and decide to either remove a node from his path or add
one to the set of possibilities.

Another use case is that of a sensing robot. Imagine
it has a number of different locations from which it can
collect data. The amount of information it collects at
each location depends on how long it stays or how much
power it uses. The problem becomes how to maximize
the amount of information the robot can collect with
a set amount of fuel. Now, consider the scenario that
before the robot goes out we can spend time computing
the best path that we want it to take. However, while
the drone is collecting data it discovers something new,
either a new point to go look for or that something that
initially looked promising no longer does. With the new

d2 d6
Start fa(tz) f5(ts)
d] d3 d5 d8 d9
d4 d7
fi(t) Ja(ta) f3(83)

Figure 1: An example graph in which the Problem is given an amount of time T to maximize Z?zl fi(t;) while
keeping >>_, t; + >;_, x;d; < T !, with only taking connecting paths and returning to the start.

algorithm, the drone can more easily recompute a new
best path and still get provably good results.

2 RELATED WORKS

The problem as stated is NP-Hard, which we prove via
reduction from the known NP-Complete problem, The
Traveling Salesmen Problem, as follows: the reward at
each node is 1 for O time and does not increase, and the
minimum reward is equal to the number of nodes, which
completes our reduction[1].

Since the problem as stated is intractable unless P =
NP, current work has attempted to create an anytime
algorithm that can solve small cases exactly and large
cases approximately in reasonable amounts of time. An
anytime algorithm is one that returns a feasible solution
nearly immediately and iteratively makes it better over
time, while remaining feasible. The algorithm will con-
verge on the optimal solution if given enough time, but
can be stopped early for an approximate solution.

This is done by setting up the problem as an Integer
Linear Program (ILP) and solving it using the Branch
and Bound technique. > With Branch and Bound, we
immediately get a valid solution, which is either go to

lx; = 1if you take the edge and 0 otherwise

2Branch and Bound first solves ILP by ignoring the integrality con-
straints. Then it chooses one of the variables, which has a non-integer
optimal value, and creating two new subproblems, which are the
same problem as the parent problem, but with the extra constraint
that the chosen variable has to be either less than or equal to the floor,
or greater than or equal to the ceiling of the current optimal value.
This method of solving inherently gives rise to an anytime algorithm,
because a feasible solution is found instantly, and iteratively better
solutions are found from that. The solution of simply not going to
any nodes gives a feasible solution, which is under the maximum
distance and has no reward.

none of the nodes for the maximization problem, or all
of the nodes for the minimization problem then make
it better over time. We can choose to stop when the
solution is optimal, after we have guaranteed to be close
to the optimal either as a fraction of the optimal or within
some € of the optimal, or simply after some amount of
time.

However, for reasonable sized problems with reason-
able guarantees about how good the solution is, in the
range of about 100 Points of Interest and within about
20% of optimal, the problem can take on the order of
minutes to solve, even allowing for non-optimal results,
which is unreasonable for any real-time application [3].
This leads to the main goal of this project, which is to
create an online algorithm which will allow us to take
the output of a run of the algorithm and more quickly
find a solution to a nearby problem, which we have ei-
ther added or removed a node from the graph. The idea
is that we can amortize the expensive cost over many
iterations or use it for the applications described above,
where online solutions naturally apply.

The Traveling Salesmen Problem, of which this prob-
lem is a variant, is a highly studied problem and general
approaches for an efficient solution fall into two cate-
gories. The first is to use heuristics: this can give fast
and often good results in practice, but how close these
results to optimal are cannot be proven. The second is
to use a worse case exponential algorithm with provable
bounds.*[2]

For our problem, we considered two general approaches.
The first was to follow the example given by Jaillet and

3 Another approach is the simple algorithm of finding the minimum
spanning tree and traversing every edge twice, which gives a 2-
approximation and can be done in nearly linear time

Lu which creates an online algorithm for the Traveling
Salesmen Problem with Service Flexibility, and then
complete a reduction from our problem to this one[2].
However, they prove that a 2-approximation for a poly-
nomial time online or offline algorithm is optimal[2].
We found that a 2-approximation is not good enough
for many applications and so we decided to sacrifice
theoretical polynomial time to achieve a better quality
of solution.

For this reason, we use an ILP because while the
Branch and Bound approach is exponential, in practice,
it can find a good approximation in a reasonable time
frame.

3 THE FORMAL PROBLEM STATEMENT
The problem is stated formally as follows:

Given:

o the set V = {vy,v,,...,v,}, each representing a
node

e the set E, where e; ; represents the edge from v;
to Vj

e the set D, where d; ; is the length of edge e; ;

o the set of functions F = {fi(t), f2(t), ..., fu(?)},
where each f;(t) represents the time dependent
reward received for staying at node n; for time ¢.
These functions are continuous and satisfy both
fi(t) = 0and f/(0) > 0.

e a maximum time T

Find: the path, the set of nodes, N’, which makes a cycle,
and the set of edges E’ such that the edge points from
one node in N’ to the next, and the time ¢; spent at each
node achieves the maximum of the sum of each reward
function.

max Z fi(ti)
ieN’
subject to Z b+ Z dij<T
ieN’ (i,j)eE’

4 PROPOSED SOLUTION

The idea is that we use the current ILP to generate an
initial solution for some problem graph. We can now use
information gained during this run to add and remove a
node from the problem graph and recompute a solution
to the modified graph. This portion of recomputing the
solution on the modified graph will take less time than

running the original algorithm on the modified graph.
We describe the method we use to generate these new
solutions after each change, for both the maximization
and minimization problems. For each subproblem we
will construct a valid ILP and while in some cases we
will not solve it completely for performance reasons
this allows us to maintain correctness and the anytime
property.

We can construct examples such that we gain no in-
formation in the first round and so at the worse case we
will have to run the full algorithm as we did for the first
solution. An easy example of this is the case where we
had a solution that only visited one node in the graph,
we we now remove that node we have no information
about the rest of the graph. For this reason we cannot
improve the worse case running time of the algorithm,
only the average running time.

4.1 Finding the First Solution

To find the first solution, we use the algorithm Yu et al.
presented in 2015[3]. This simply sets up the problem as
a single ILP and gives it to an ILP solver. For the details
of how the ILP is set up, see Yu et al.*

4.2 The Maximization Problem

For the maximization problem the goal is to find a set of
nodes, an ordering, and an amount of time to spend at
each node, such that we maximize our reward without
exceeding a time bound.

4.2.1 Removing a Node. Removing a node from
the problem can be represented in the ILP by adding a
single constraint, that the max time spent at that node
needs to be 0. We now need to solve this new ILP, which
is the ILP which we used in Section 4.1 with this added
constraint. However, we can use information from the
first run to speed up the process.

The first thing we check is if the solution is already
good enough. What is often the case, is that the original
solution is closer to optimal than needed, so simply
skipping the node and changing nothing else leaves a
solution which is still provably good enough. This is
helped by the fact that removing a node may also lower
the optimal result. We then check if this solution is good
enough. If it is, we are done; if not, we have to recompute
the full ILP.

We do this as follows:

4Here we use Gurobi as our ILP solver.

e First, look up the amount of reward received
from the node we are trying to remove.

e Add the constraint described above to the ILP
and solve the LP relaxation of the problem.’

e Retrieve a new upper bound, by getting the so-
lution to the LP relaxation. ©

e Compute the new lower bound, which is the old
solution less the reward from the removed node,
since we can take the same tour and not stop at
the removed node.

e Check if this is good enough. If so, we are done;
else, we continue and have to solve the new full
ILP in our ILP solver.

However, even when we need to recompute, we can start
with these upper and lower bounds, which enable more
pruning from the Branch and Bound tree and speed up
the problem.

4.2.2 Adding a Node. Adding a node is more com-
plex, but we follow the same general method. We first
construct the new ILP as if we were to solve the problem
from scratch. This new ILP has the new constraints for
the new node as well as a different objective function
which includes the new node. At this point, if we solve
this ILP, it is equivalent to resolving from scratch and
using the technique in Section 4.1.

Instead, we once again solve the LP relaxation to give
us the upper bound on the modified problem. We get the
lower bound by looking at the solution to the original
problem, since we know that is a valid solution to the
new problem as we do not have to go to all of the nodes.

If we find that the original solution is good enough
as compared to the new upper bound, we are done and
our path is the same as the path we found before. If the
original solution is not good enough, we add the new
constraints, the upper and lower bound, which help with
pruning, and re-solve the problem in full using an ILP
solver.

4.3 The Minimization Problem

For the minimization problem, the goal is to find a set
of nodes, an ordering, and an amount of time to spend

5The LP relaxation of an ILP is the same optimization problem,
ignoring any integrality constraints.

6Solving the LP relaxation is both computationally faster and also
gives us a new upper bound, since an LP only removes constraints
and thus must have a solution at least as high as the original ILP that
was relaxed.

at each node, such that we achieve a specified level of
reward while using as little time as possible.

4.3.1 Removing a Node. Removing a node can
once again be represented by adding the same single
constraint, but this time we need to worry about falling
outside of the feasible region. That is to say, removing
a node from the path may leave us with a solution that
is not a valid solution to the problem since it does not
achieve the required minimum reward. If we can remove
the node and remain feasible, then our solution must be
good enough. This is because it can only take less time,
and as stated, we remain feasible, so by definition, we
have the required reward. On the other hand, if we are
no longer feasible, then we have to once again add the
new upper and lower bound and re-solve the full ILP.

4.3.2 Adding a Node. Adding a node is nearly the
same as described in Section 4.2.2: we again construct
the new ILP and solve the relaxation. However, in this
case, the LP-Relaxation gives us a minimum, since it is
a minimization problem. The upper bound is found by
looking at the old solution. We check if this solution is
good enough, and if not, we re-solve the ILP with the
extra bounds.

5 RESULTS

Due to the fact that the Tourist Path Problem is NP-Hard,
we focus only on experimental running time and not on
asymptotic running time, which is exponential in the
number of nodes.

5.1 The Experiment Setup

The tests were run on a machine with an Intel Core
17-4700MQ, which has four cores and eight hardware
threads, running at 2.4GHz base Frequency up to 3.4GHz
with Turbo Boost. The machine has 16GB of memory,
but memory was not a limiting factor. All tests were run
on the same machine, so we focus only on the compara-
tive running times.

5.2 The Grid Graph

The experiments are done on a grid graph. That is to say
that the nodes were on the lattice points of an equally
spaced grid and nodes have a direct path between them
if the distance between them is less than the width of
the graph. The graphs were grids of the following height
and width respectively, which will be referred to as their

total number of nodes (length*width) {(4,5), (5,6), (6,7),
(7,8), (8,10)}.

5.3 The Tests

The tests were run as follows: for all four types of
problems (removing a node in maximization, adding
a node in maximization, removing a node in minimiza-
tion, adding a node in minimization), we first run the
program to generate an initial solution and time this,
then either add or remove a node, re-solve, and time
once again. For removing a node, we ensure that the
node removed was part of the path. This is because re-
moving a node outside the path is trivial. For adding a
node it may or may not be part of the optimal solution,
since somebody can use the program to see if any node
is worth adding.

We then run these 4 types of problems on all five of
the graphs described above for 5 different degrees of
optimality. By this, we mean that problems in a cate-
gory continue until they find a solution that satisfies that
level of optimality. We say a problem satisfies a certain
level of optimality if we can prove that the absolute dif-
ference between the upper and lower bounds over the
upper bound is less than some value. Thus, an optimality
of 0 means we achieved optimality and an optimality
of .5 means our solution gives a reward, or uses time,
within a factor of 2 of the optimal. We consider opti-
mality in the set {.5,.4,.3,.2,.1}. This gives us 100 total
problem types: minimization and maximization, adding
and removing nodes, five different sized graphs, and five
different optimalities. We then ran the program many
times to decrease the variance due to the high amounts

of randomness.”.

5.4 The Data

Overall, we show that finding a solution to a modified
problem after the original solution is found is faster by
using the algorithm described in Section 4 than solving
the problem from scratch.

Since we have four separate problems and 100 differ-
ent types of runs for these problems, we do the analysis
in three different ways. First, we look at all of the results
at once, with each run normalized by the average time
that problem type took. This will allow us to see the
general pattern in the results. Next, we look at the four

7Some of the sources of randomness are the following: each node
has a random reward function and the node we choose to remove or
add is chosen at random.

2000 Doriginal online
1800
1600
1400

1200

=
o
o
o

00
o
o

Frequency

o))
o
o

400

° .NWW'mmml!FF!!Il!mm«mm...,.r,,.._...,,.,,,,,r,,r,,.,,,,.,,,.._,_,F.,,,.W.._,,_.nr

0.05 0.55 1.05 155 205 255 3.05 355 4.05 455 5.05

o

Time Ratio

Figure 2: A Histogram showing the normalized
times for all runs

problem types. We sort all of the runs for these problem
types, keeping in mind that we have the same number of
each of the 25 sub-problems. We then look at the 10th,
25th, 50th, 75th, and 90th percentile and compare the
time it took for the first run and the time it took to re-
solve after adding or removing a node. Lastly, we look
at every problem individually and evaluate whether we
can statistically say that the online algorithm is faster.

5.4.1 Total Normalized Comparison. In Figure 2,
we can see an overall comparison of the online algorithm
to the original algorithm. This graph is a histogram of
the times of all of the runs after they have each been
normalized by dividing each data point by the average
of all data points in the same subproblem. This allows
us to compare all the different tests to one another. From
this, we see two things. The first is that online algorithm
is much more stacked to the left, which means that for
the vast majority of runs, it takes less time. The second
is that after the peak to the left, both sets seem to have
similar trends. This is due to most of the performance
coming from the fast paths and when it does not take
one of the fast paths it takes a similar amount of time as
the original.

5.4.2 The Four Subproblems. Here we look at
each of the four subproblems to see the different perfor-
mance characteristics of each one. For each subproblem,
we take all runs, order them by time, and look at the

RT percentile || Original (s) | online (s)
10% 0.059 0.012
25% 0.138 0.041
50% 0.472 0.110
75% 1.859 0.318
90% 5.484 1.73

Table 1: Running time comparisons for removing a
node in the maximization problem

RT percentile || Original (s) | online (s)
10% 0.066 0.009
25% 0.148 0.017
50% 0.508 0.067
75% 1.964 0.228
90% 5.804 0.528

Table 2: Running time comparisons for adding a
node in the maximization problem

different percentiles to get an idea of the comparative
times of the online algorithm.

Removing a node in Maximization: In Table 1, we
see that when we remove a node from the maximization
problem, we are faster by a factor of around four to five.

Adding a node in Maximization: In Table 2, we see
that while the times for the original algorithm are similar
as in Table 1, the times for the online portion drop such
that there is almost an order of magnitude improvement
over the original approach.?

Removing a node in Minimization: We see in Ta-
ble 3 that while we are still faster for this subproblem,
the improvement is not as strong as the others. This is
because when removing a node in a minimization prob-
lem, the problem can easily become infeasible, and in
this case, there are no options other than starting the
algorithm over from scratch. We see this effect in the
data that while the bottom 50% is almost 3 times faster
than the original, the top 50% does not have a large
performance improvement.

Adding a node in Minimization: This ends up being
the easiest problem. We see in Table 4 that we have a
performance gain of around a factor of 20. We know
that adding a node is easier than removing one because

8The time of both of these original approaches should be the same
because they are running the same code and should give the same
distribution

RT percentile || Original (s) | online (s)
10% 0.082 0.031
25% 0.163 0.060
50% 0.570 0.185
75% 1.752 0.827
90% 3.711 2.773

Table 3: Running time comparisons for removing a
node in the minimization problem

RT percentile || Original (s) | online (s)
10% 0.068 0.000
25% 0.173 0.015
50% 0.618 0.021
75% 1.924 0.056
90% 4.063 0.114

Table 4: Running time comparisons for adding a
node in the minimization problem

when we remove a node we remove one of the nodes
along the tour, as you would never want to remove a
node not on the tour. However, when we add a node, we
add any of the possible points from the grid, so it may
be far removed from the tour, making it easier to ignore
in many cases, leading to the large performance gains
we see here.

5.4.3 Every Problem Type. Lastly, we evaluate if
there are any specific subproblems that cause difficulty.
We want to know which problems we could solve faster
and which we could not. For each of the 100 problems,
we ran a t-test to test if the modified problem was faster
than the original. We see the p-values in Table 5 where
the null hypothesis was that the online algorithm took
the same amount of time. A low positive value shows
that the online algorithm performed faster. A negative
value means that for that problem the online was slower.

Removing a node in Maximization: We see that we
are faster for all problems that require optimality less
than .1 and do better with larger graphs. We do better
with larger graphs because the original algorithm runs
substantially slower and the fast path through our code
is not as much effected by the size of the graph. When
asked for high optimalities we almost always have to
re-solve resulting in extra work.

Adding a node in Maximization: We see, again, that
the online algorithm is always faster for optimality less

than .1, but for this problem, the algorithm only fails for
large graphs.

Removing a node in Minimization: We get the same
results as before, where the online solution is faster for
all but problems on large graphs that require a solution
close to optimal.

Adding a node in Maximization: In this case, we
are always faster, which we saw before in Section 5.4.2
that this is a particularly easy problem.

Overall, we found the following: for all problems
with optimality worse than .1, the online algorithm was
statistically better with p =.05.° For optimality .1, the
modified problem is faster for adding a node in the mini-
mization problem while the rest were statistically similar.
The complete results can be found in Table 5.

6 CONCLUSION

We find that we can add and remove nodes from the prob-
lem graphs and solve them between three and twenty
times faster as long as we do not need too high a degree
of optimality.

We also describe ways that we can quickly and more
easily compute whether we need to spend the effort in
recomputing the entire problem. This could be useful
in the drone example described earlier. The drone itself
could do the easy computation, and if the more expen-
sive computation needed to be done, then the problem
could be sent back to a larger server to be solved.

There are several ways to extend this work. The first
is to try it on different kinds of graphs, especially those
which which are real world representations. The next is
to try to extend it farther than adding and removing a
single node. For example, we could determine the impact
of iteratively adding or removing nodes in sequence, and
if this iteration allows us to build up to bigger solutions
than we could otherwise solve.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. In-
troduction to algorithms, volume 6. MIT press Cambridge,
2001.

[2] P. Jaillet and X. Lu. Online traveling salesman problems with
service flexibility. Networks, 58(2):137-146, 2011.

[3] J. Yu, J. Aslam, S. Karaman, and D. Rus. Anytime planning
of optimal schedules for a mobile sensing robot. In Intelli-
gent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pages 5279-5286. IEEE, 2015.

9With 79 of the 80 tests having p < .01 and 78 of the 80 tests having
p < .0001

Removing a node in Maximization

Nodes in Graph | 0.5 Optimal | 0.4 Optimal | 0.3 Optimal | 0.2 Optimal | 0.1 Optimal
20 6.13E-9 1.72E-9 3.18E-6 1.753E-2 -2.87E-3
30 1.91E-25 2.46E-16 4.20E-13 2.31E-6 -0.21
42 1.05E-19 1.24E-5 1.34E-6 6.58E-5 -6.40E-2
56 2.04E-27 3.68E-23 1.93E-21 2.81E-13 -0.82
80 5.32E-34 5.26E-34 2.73E-42 2.36E-24 8.15E-2

Adding a node in Maximization

Nodes in Graph | 0.5 Optimal | 0.4 Optimal | 0.3 Optimal | 0.2 Optimal | 0.1 Optimal
20 1.82E-30 2.40E-24 1.76E-20 1.270E-15 | 5.29E-8
30 3.08E-28 2.38E-30 1.66E-21 1.93E-16 3.78E-9
42 3.27E-17 5.70E-23 3.55E-25 1.94E-13 8.96E-2
56 2.46E-34 8.41E-27 1.18E-26 8.60E-11 0.42
80 9.70E-38 6.80E-40 9.70E-34 2.18E-14 0.11

Removing a node in Minimization

Nodes in Graph | 0.5 Optimal | 0.4 Optimal | 0.3 Optimal | 0.2 Optimal | 0.1 Optimal
20 2.02E-9 5.47E-9 3.62E-5 9.53E-6 6.89E-5
30 7.02E-10 3.23E-12 6.46E-9 3.11E-7 8.09E-2
42 6.98E-12 2.01E-12 4.56E-11 2.45E-7 0.28
56 3.40E-22 8.25E-19 1.87E-3 5.73E-9 0.14
80 6.62E-21 7.76E-22 5.20E-11 1.13E-3 0.27

Adding a node in Maximization

Nodes in Graph | 0.5 Optimal | 0.4 Optimal | 0.3 Optimal | 0.2 Optimal | 0.1 Optimal
20 4.98E-15 2.32E-20 2.97E-25 6.76E-15 3.43E-9
30 1.62E-65 1.54E-45 2.18E-26 1.22E-20 3.51E-18
42 4.92E-36 2.86E-53 1.20E-43 9.76E-39 2.16E-8
56 3.51E-49 8.72E-43 1.55E-43 1.43E-22 5.51E-12
80 6.47E-47 2.086E-37 | 5.73E-34 1.96E-15 3.64E-5

Table 5: The p-value for each of the 100 subproblems described. A negative p-value means that the modified
problem ran slower. We have statistically significant results that simply modifying a problem is faster than
resolving that problem in almost every case.

