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Abstract

An Anti-Magic labeling for a graph G = {V,E} is a bijection between the numbers
{1, ..., |E|} and the edges such that the sum of all edges connected to a vertex is distinct.
in 1990 Hartsfield and Ringel conjectured that all simple connected graphs except K2

have an Anti-Magic labeling. We will discuss and summarize recent results in the field
of edge labeling for graphs, specifically Anti-Magic graphs and their variations.

1 Introduction

We will be talking about edge labeling for graphs, specifically Anti-Magic graphs variants.
Anti-Magic graphs were introduced in 1990 by Hartsfile and Ringel[1]. The variants we will
be talking about are Edge Graceful, k-Anti-Magic, (ω, k)-Anti-Magic, and Oriented Anti-
Magic.

Firsts we will define an Anti-Magic labeling.

Definition 1.1. An Anti -agic graph is a graph with an Anti-Magic labeling of the edges.
An Anti-Magic labeling of a graph with m edges and n vertices is a bijection from the set of
edges to the integers {1, ...,m} such that all n vertex sums are pairwise distinct. A vertex
sum is the sum of labels of all edges incident with that vertex.

In 1990, Hartsfield and Ringel conjectured that every simple connected graph, other
than K2, is Anti-Magic. We can see via inspection that K2 is not Anti-Magic. Whether this
conjecture is true remains an open problem today.[2] From now on every graph in this paper
can be assumed to be simple, which means they have no double edges or self loops.

In this paper we will summarize current progress to proving graphs are Anti-Magic. We
will show how close we are to proving different kinds of graphs are Anti-Magic. We will start
Edge Graceful graphs and continue with the weaker forms of k-Anti-Magic, and (ω, k)-Anti-
Magic, the finish with Oriented Anti-Magic.

1.1 Variants of Anti-Magic Graphs

We will talk about several different variants of Anti-Magic graphs.

Definition 1.2. An Edge Graceful graph is an Anti-Magic graph where the vertex sums are
distinct modulo |V |.
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Definition 1.3. A k-Anti-Magic labeling for a graph for non-negative integer k is an injection
from the set of edges to the integers {1, 2, ...,m+k} such that all n vertex sums are pairwise
distinct.

We see that a 0-Anti-Magic Graph is an Anti-Magic graph.

Definition 1.4. A (ω, k)-Anti-Magic labeling, with k a non negative integer and ω a weight
function of the set of vertices, is an injection from the set of edges to the integers {1, 2, ...,m+
k} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels
of all edges incident with that vertex and its initial weight under ω.

We see that a (0,0)-Anti-Magic graph is an Anti-Magic graph, where the first 0 is the
0-function which maps all the vertices to 0 and the second 0 is just the number 0. And that
a (0, k)-Anti-Magic graph is a k-Anti-Magic graph.

Definition 1.5. An oriented Anti-Magic graph is a version of Anti-Magic graphs for directed
graphs. An oriented Anti-Magic labeling of a digraph with m edges and n vertices is a
bijection from the set of edges to the integers {1, 2, ...,m} such that all n oriented vertex
sums are pairwise distinct, where an oriented vertex sum is the sum of labels of the edges
entering that vertex minus the sum of labels of the edges leaving it.

There are 2 general ways people go about trying to push towards proving the Anti-Magic
conjecture. The first is to build up types of graphs and combinations of those that we know
are Anti-Magic; the other is to use these other forms of Anti-Magic graphs and try to lower
the bound on k and ω until it can be shown that they both can be 0.

2 Edge Graceful Graphs

Edge Graceful graphs is the strongest form of labeling and thus we know the least about it.
Here we just show a single theorem from Hefetz in 2005.[3]

Theorem 2.1. Let G = (V,E) be a graph on n vertices and m edges, such that G =
H ∪ f1 ∪ ...∪ fr where H = (V,E ′) is edge graceful and the fi’s are 2-factors; then G is edge
graceful.

Definition: A k-factor of a graph is a sub-graph that includes all of the vertices and
subset of the edges such that the subgraph is k-regular.

We note that any 2-factor must be comprised of 1 or more cycles in the graph, since every
node has degree 2.

Proof. Let G = H ∪ f1 ∪ ...∪ fr |V (G)| = |V (H)| = n and let ω be an edge graceful labeling
of H. We will prove this via induction on r. Our base case is r = 0. If r = 0 then G = H
and we have an edge graceful labeling on G since H is required to be edge graceful. Now we
will show that if we have an edge graceful labeling of a graph, we can always add a 2-factor
and get another edge graceful labeling. This means that for any r > 0 we can remove a
2-factor fr from G. By the induction hypothesis, we know that G′ = G\fr is edge graceful.
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21 43 5
1 84 69 2

Figure 1: A path that is labeled as described in Theorem 3.1.

Let ω′ be that edge graceful labeling.

We will now show how we can label the edges in this 2-factor such that the total graph
is Edge Graceful. We will label these edges with the labels |E ′| + 1, ..., |E ′| + n which are
0, 1, ..., n− 1 modulo n.

We now look at each of the cycles in fr such as v1 − e1 − v2 − e2 − ...− vk − ek − v1 Let
us call the vertex sums of these vertices in the Edge Graceful graph G′ to be a1, ..., ak. We
label each edge from fr with a−1i in 〈Zn,+〉. Remember that our labels corresponded int the
field Zn to 0, 1, ..., n − 1 and so we are guaranteed to have each label. Now for this cycle
the vertex sum of each vertex i is the inverse in 〈Zn,+〉 of the vertex sum of vertex (i− 1)
mod n. Which we know are unique, which gives us a new Edge Graceful labeling. We now
do this for every cycle in fr and have a Edge Graceful labeling of G.

3 Anti-Magic Graphs

We know several general kinds of graphs are Anti-Magic including Pn (n ≥ 3), cycles, wheels
and Kn (n ≥ 3). Here we will give a quick proof for the first 3.

Theorem 3.1. Every Path graph of length at least 3 is Anti-Magic. Where a Path graph is
one for which the vertices can be listed in such an order that vi has an edge to vi+1 for all
1 ≤ i < n.

Proof. Assign an ordering to the vertexes such that v1 and vn are both of degree 1 and the
edges are ei = (vi, vi+1) for 1 ≤ i < n − 1. Label the edges from e0 to edn

2
e with 2i + 1 and

label the edges from en−1 to edn
2
e+1 with 2 through bn

2
c with the 2 on en−1.

This means that the vertex sums are as follows: v1 is 1, vi for 2 ≤ i ≤ bn
2
c is 2i−1+2i+1 =

i ∗ 4, vbn
2
c+1 is m+m− 1, vi for bn

2
c+ 2 ≤ i ≤ n is (n− i) ∗ 4 + 2. We note that the first one

is uniquely one, the next set are increasing and 0 mod 4 the middle one is an odd number,
and the last set are decreasing 2 mod 4, thus they are all unique. We see in the example in
Figure 1 that v1 is 1, v2 and v3 are 4 and 8 respectively, the middle is 9, the last count down
with 6 and 2, both 2 mod 4.

Theorem 3.2. Every Cycle graph is Anti-Magic. Where a Path graph is one for which the
vertices can be listed in such an order that vi has an edge to vi+1 mod n for all 1 ≤ i ≤ n and
the number of vertices is at least 3.
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Figure 2: We see how we can always add a edge to a cycle graph as described in Theorem
3.2

Proof. Start with a cycle of length 3, label the edges with 1,2, and 3. The vertex sums are
3,4,and 5. Thus it is Anti-Magic, this can be seen in Figure 2. We will show how we can
always take a vertex and add it to this graph and make another Anti-Magic graph. Start
with the cycle of length 3, then take the edge labeled 3 and break it into 2 edges and add
a vertex in the middle. Leave the label attached to the vertex with the smaller sum alone
and increase the other label by 1 to 4. Now we have vertices with weights 3 and 4 that did
not change, we increased 1 of the old vertices from 5 to 6, and the new vertex we added is 7.
This is also shown in Figure 2. We note that the 2 nodes of max label are still next to each
other. We do the same thing again. Split the edge of max weight keeping it with the same
value along the side with the lower label. This means we take the old node of max weight
and add 1 and make a new node that has weight higher than that, since it is connected to
the 2 edges of maximum label, since no other are changed we are left with an Anti-Magic
graph. Thus any cycle graph must be Anti-Magic.

In 2005, Wang proved that the Cartesian product (Cm × Cn) and higher dimensional
variants (Cm1 × ... × Cmt) are Anti-Magic. And moreover he showed that the Cartesian
product of a cycle graph with any k-regular graph is Anti-Magic for k ≥ 2.[4]

Theorem 3.3. Every Wheel graph is Anti-Magic. Where a Wheel graph is a cycle graph
with an extra node that has an edge connecting it to every other node.

Proof. We use the proof of Theorem 3.2 and show that we can always add another node
that connects to all other nodes. We start by ordering the vertices so that 1, ..., n − 1 are
the cycle and n is in the middle. We order the edges so that 1, ..., n− 1 are in the cycle and
n, ..., 2n − 2 connect to the center node. First label all edges in the cycle with the labels
1, ..., n− 1 as we did before. Call this labeling ω. Label the edge going to the lowest weight
in ω with the lowest remaining edge, which is n + 1. Keep doing this. Each vertex going in
order of orders in ω gets the next lowest remaining label. Since each bigger label gets a label
bigger than everything else all vertex sums in the cycle must be unique. The vertex sum in
the middle is more than the sum of the three biggest weights, so it must be different from
the rest which all have degree three. This can be seen in Figure 3.
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Figure 3: A Wheel graph as described in Theorem 3.3

We also know that complete graphs on 3 or more vertices are Anti-Magic. Moreover we
know that every graph with high enough minimum degree is Anti-Magic. Alon showed in
2003 that

Theorem 3.4. There exists an absolute constant C such that every graph with n vertices
and minimum degree at least C ∗ log(n)

log(log(n))
is Anti-Magic.[5]

4 k-Anti-Magic Graphs

We know that given enough labels we can always label a graph so we start with a trivial
bound that all simple connected graphs with n vertices and m edges must be 2m-Anti-Magic.
This can easily be seen since if we label edge ei with 2i then we have all distinct vertex sums
since their are no combinations of unique edges that collide.

In 2005 Hefetz used Alon’s Nullstellensatz to give several new bounds for different types
of graphs[3]. We start with one that is more general than simple connected but still manages
to lower the bound to a constant factor of the number of nodes.

Theorem 4.1. Every graph with at most one isolated vertex and no isolated edges is 2|V |−4-
antimagic. Furthermore it is (ω, 2|V | − 4)-Anti-Magic for every initial weight function ω.

Proof. We will show how to construct such a labeling for any graph fitting the criteria. First
assign an arbitrary ordering of the edges {e1, ..., em}. At stage i, assign a weight to edge ei
from the set {1, 2, ...,m+2n−4} such that the vertex sum of both endpoints differ from that
of any other endpoints. We note that it is possible that the two end points of an edge have
the same value, we ensure only that they differ from all others. In fact, for the first label
they will always have the same value if the initial weight of the 2 edges was the same. At
each stage, each endpoint can be assigned to anything but n− 2 items,which are the values
that would collide with that of any other vertex sum. Since each edge effects 2 vertexes,
this gives us up to 2n − 4 forbidden values for each edge. However at each step we have
(m + 2n− 4) different options less the (m− 1) labels we might have already used giving us
2n− 3 possible labeling so we always have a possible label.

5



We note that at no stage did we require any information about the initial weight of the
vertices so this same method works for any starting vertex weights.

Theorem 4.2. If G = (V,E), where |V | > 2, admits a 1-factor then is it (|V |−2)-antimagic

To prove this we need a few other theorems.

Theorem 4.3 (Combinatorial Nullstellensatz). Let F be an arbitrary field, and let f =
f(x1, ..., xn) be a polynomial in F [x1, ..., xn]. Suppose the degree deg(f) of f is

∑n
i=1 ti,

where each ti is a nonnegative integer, and suppose the coefficient of
∏n

i=1 x
ti
i in f is nonzero.

Then, if S1, ..., Sn are subsets of F with |Si|>ti, there are s1 ∈ S1, s2 ∈ S2, ..., sn ∈ Sn so that
f(s1, ..., sn) 6= 0. [6]

We will also need a special Case of the Dyson Conjecture proved in the 1960s by many
people including [7] and [8].

Lemma 4.4. For every positive integers k, n let ck,n be the coefficient of
∏n

i=1 x
k(n−1)
i in

V 2k
n (x1, ..., xn) =

∏
n≥i≥j≥1(xi − xj)

2k; then ck,n 6= 0

Now we can do the proof of Theorem 4.2

Proof. Let G be a graph on 2n vertices, and M = {(ui, vi) : 1 ≤ i ≤ n} a 1-factor of G. The
m − n edges of G\M can be labeled such that the vertex sum of ui differs from the vertex
sum of vi using the integers {1, 2, ...,m− n + 2} using the same scheme we used in 4.1. We
notice that, in this case, for each vertex we only have 1 other vertex that it has to avoid,
the single vertex that it is connected to in the 1-factor, which is why we can label the graph
G\M with m− n + 2 labels.

For every vertex in G we denote its initial weight under this scheme as ω(v). Now we
will show that we can label the edges of M. Let xi be the label of edge (ui, vi) in M. We need
the following to be true for all vertex sums to be different for 1 ≤ i<j ≤ n:

xi + ω(ui) 6= xj + ω(uj)

xi + ω(ui) 6= xj + ω(vj)

xi + ω(vi) 6= xj + ω(uj)

xi + ω(vi) 6= xj + ω(vj)

Note: we also need ω(ui) 6= ω(vi), but this is true by our initial labeling

So we just need to show that there exists a vector x̄ = (x1, ..., xn) from the set of unused
labels {1, ...,m + 2n− 2} such that
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PM(x̄) =
∏
i<j

(xi − xj)∗

(xi − xj + ω(ui)− ω(uj))∗
(xi − xj + ω(ui)− ω(vj))∗
(xi − xj + ω(vi)− ω(uj))∗
(xi − xj + ω(vi)− ω(vj)) 6= 0

This is satisfied exactly when all 4 of the equations above can be satisfied.

Which is the same as finding a non-vanishing
∏n

i=1 x
ti
i in PM such that

∑n
i=1 ti = deg(PM)

and ti<3n− 2 for 1 ≤ i ≤ n by Theorem 4.3.

Which is the same as the monomial in V 5
n (x̄) =

∏
i>j(xi − xj)

5, which is true by Lemma
4.4.

Theorem 4.5. If G = (V,E) is a (2d + 1)-regular bipartite graph, where d ≥ 1, and if
moreover there exists a decomposition of G into a 1-factor and d 2-factors whose every

circuit is of length divisible by 4 then G is
(
|V |
2
− 1
)

-antimagic

Proof. Let G = (U ∪ V,E) be a bipartite graph with U = {u1, ..., un} and V = {v1, ..., vn}.
And let {(ui, vi)|1 ≤ i ≤ n} be a 1-factor and let {fi|1 ≤ i ≤ d} be 2 factors with no circuits
of length 2 mod 4. We note that a circuit in a bipartite graph cannot be of odd length since
for every time it goes from U to V it must also go back. This means that every circuit is of
length 0 mod 4.

Label f1 with (1, 2dn, 2, 2dn − 1, ..., n, 2dn + 1 − n) starting with an arbitrary edge and
label the rest of the f ′is with (n(i− 1) + 1, 2dn− n(i− 1), 2dn− n(i− 1)− 1, n(i− 1) + 2,
n(i− 1) + 3 ,..., n(i− 1) + n, 2dn− n(i− 1)− n + 1) again starting with an arbitrary edge.

The sum of each vertex of V is d(2dn + 1) of which 2dn + 1 is from each 2 factor. Let
the weight of each vertex v, after dealing with all the 2-factor graphs, be denoted ω(v).

Denote the edges of the 1-factor graph {(ui, vi)|1 ≤ i ≤ n} as x1, ..., xn and we need the
same 4 conditions as Theorem 3

xi + ω(ui) 6= xj + ω(uj)

xi + ω(ui) 6= xj + ω(vj)

xi + ω(vi) 6= xj + ω(uj)

xi + ω(vi) 6= xj + ω(vj)

Since we have ω(v1) = ... = ω(vn) we can get rid of the extra constraint xi 6= xj meaning
we now only need a monomial of degree <2n− 1, which is again guaranteed by the Lemma
4.4
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Theorem 4.6. Let G be a graph on n vertices and maximal degree n − k, where k ≥ 3 is
any function of n: then G is (3k − 7) antimagic

Proof. Let G = (V,E) where |V | = n and |E| = m be a graph of maximal degree n−k, k ≥ 3.
Let v ∈ V be a vertex of maximal degree (n − k) and v1, ..., vn−k be its neighbors. Let
A = {u1, ..., uk−1} be the rest of the vertices in G. This partitions the vetices into 3 groups.
We will now split up our edges into three groups E = E1 ∪ E2 ∪ E3, by which vertices they
are connected to. E1 is the set of edges from v. E2 is the set of edges with at least 1 endpoint
in A, that is to say edges that touch a vertex that is not connected to the vertex of maximal
degree. E3 is the possibly empty subset of edges that connect two neighbors of v, that is to
say go from vi to vj.

We now label the edges in E2 as in Theorem 4.2. For edges contained in A we have 2k−6
forbidden labels and for edges that have a vi we have k − 2 forbidden labels (for ui). Thus
we can do these labels using |E2| from the set {1, ..., |E2| + 2k − 6}. These vertex sums of
u1, ..., uk−1 as a1, ..., ak−1. Note that these are final since no other edges touch these vertices.

Label E3 arbitrarily using the smallest unused labels.

Denote the current vertex sums of vi as ω(vi) and assume without loss of generality that
ω(v1) ≤ ... ≤ ω(vn−k). Now label the edges of E1 with the largest n− 1 labels (b1<...<bn−1).
Note that we have only used the bottom m + 2k − 6 and we have m + 3k − 7.

We do this as follows, (v, v1) is given the smallest integer bi1 where 1 ≤ i1 ≤ n− 1 is the
smallest integer such that ω(v1) + bi1 6= at for every 1 ≤ t ≤ k− 1, which must exist since we
have n− 1 labels and k − 1 restrictions, and so on. After labeling (v, vj) we have n− 1− j
unlabeled edges, n− 1− ij labels and at most k− 1 + j − ij restrictions giving us a labeling
ω′(v1)<...<ω′(vn−k).

Hefetz continues and shows that if n ≥ 6k2 then we can improve our bound to (k − 1)-
Anti-Magic[3]. He also shows that

Theorem 4.7. Let G be a graph on n = 3k vertices, k ∈ N. if G admits a K3-factor then G
is Anti-Magic

Hefets later generlizes this with Saluz and Tran in 2009 to the following. If G is a graph
on n = pk vertices where p is an odd prime and k is an positive integer, and G admits a
k-factor, then G is Anti-Magic.[9]

5 Oriented Anti-Magic

Theorem 5.1. If G = (V,E) is a (2d + 1)-regular bipartite graph, where d ≥ 1, G has an
orientation such that the resulting digraph is Anti-Magic

For the proof we follow similar to that of 4.5
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Proof. We once again define our graph to be G = (U ∪ V,E) be a bipartite graph with
U = {u1, ..., un} and V = {v1, ..., vn}. We start by directing all edges from U to V and
remove a single perfect matching {(ui, vi)|1 ≤ i ≤ n}, which we are guaranteed to have since
it is a regular bipartite graph. And label the rest of the edges.

Now regardless of the weights of the last edges, we add the vi that are positive and the
ui that are negative and so we only have a single condition

xi + ω(ui) 6= xj + ω(uj)

Which means by the same logic as before we only need to find a monomial of degree <n
which is again found by the Lemma 4.4
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